INDIAN SCHOOL MUSCAT

CHEMISTRY DEPARTMENT QUESTION BANK

The p-Block Elelments

VSA QUESTIONS (1 - MARK QUESTIONS)

- 1. In which one of the two structures, NO₂⁺ and NO₂⁻, the bond angle has a higher value?
- 2. Which one of the following is not oxidized by O_3 . State the reason.
 - Kl, FeSO₄, K₂MnO₄, KMnO₄
- 3. Account for the following (Each question carries one mark)
 - i. Iodine is more soluble in KI, than H₂O.
 - ii. $R_3P = O$ exist but $R_3N = O$ can not exist.
 - iii. N-N, bond is weaker than P-P, on the contrary N₂ is very inert.
 - iv. Both Cl and O have the same electronegativity but only O forms H-bonding
 - v. NO is paramagnetic in the gaseous state but dimagnetic in liquid and solid state
 - vi. Among Halogens F₂ is the strongest oxidising agent
 - vii. ICl bonds are weaker than Cl₂.
 - viii. Hydrogen fluoride is much less volatile than hydrogen chloride
 - ix. Interhalogen compounds are strong oxidizing agents
 - x. PCl_5 is ionic in nature in the solid state.
 - xi. Sulphur has greater tendency for catenation than Oxygen
 - xii. Phosphorous is more reactive than nitrogen.
 - xiii. Of the noble gases only xenon forms known chemical compounds

- xiv. In solution of H_2SO_4 in water the second dissociation constant Ka_2 , is less than the first Ka_1 .
- xv. Pentahalides of a metal is more covalent than its trihalides.
- xvi. Fe dissolves in HCl to form FeCl₂, not FeCl₃.
- xvii. Helium is used in diving equipments
- 4. Give reason for the following.((Each question carries one mark)
 - i. Nitrogen exhibits +5 oxidation state but does not form penta halides.
 - ii. Phosphine(PH₃) is used in Holme's signals.
 - iii. H₃PO₂ shows reducing behavior.

Group 16 elements show low rate of 1st Ionisation Energy than compared to corresponding periods of Group 15

- 5. Draw the structures of the following (Each question carries one mark)
 - i. $H_4P_2O_5$
 - ii. HClO₄
 - iii. BrF₃
 - iv. H_3PO_3
 - v. $H_2S_2O_8$
 - vi. HOCl₂
- 6. Complete the following chemical equations. (Each question carries one mark)
 - i. $XeF_4 + O_2F_2 \rightarrow$
 - ii. $Cu + HNO_3 \rightarrow$
 - iii. $HgCl_2 + PH_3 \rightarrow$
 - iv. $I_2 + HNO_3 \rightarrow$

v.
$$P_4 + SO_2Cl_2 \rightarrow$$

vi.
$$Cl_2 + F_2 \rightarrow$$

vii.
$$C + H_2SO_4 \rightarrow$$

viii.
$$Na_2SO_3 + Cl_2 + H_2O \rightarrow$$

ix.
$$NO_3^- + Fe^{2+} + H^+$$

SA (I) QUESTIONS (2 - MARK QUESTIONS)

- 7. Compare the structures of SF_6 and SF_4
- 8. i. Write the composition of bleaching powder.
 - ii. What happens when NaCl is heated with conc. H_2SO_4 in the presence of MnO_2 . Write the chemical equation
- 9. i. Hydrolysis of XeF₆ is not regarded as a redox reaction. Why?
 - ii. Write a chemical equation to represent the oxidising nature of XeF₄.
- 10. A colourless and a pungent smelling gas which easily liquifies to a colourless liquid and freezes to a white crystalline solid, gives dense white fumes with ammonia.
 Identify the gas and write the chemical equation for its laboratory preparation
- 11. Explain the structure of the following using VSEPR theory.
 - i. XeO_3
 - ii. XeF₂
- 12. Write the chemical equations of the following reactions
 - i. Glucose in heated with conc. H₂SO₄.
 - ii. Sodium nitrate is heated with conc. H₂SO₄.

SA (II) QUESTIONS (3 - MARK QUESTIONS)

- 13. Arrange the following in the order of the property mentioned
 - i. PH₃,NH₃,SbH₃,AsH₃ (increasing basic strength)
 - ii. HCl, HBr, HF, HF (increasing acid strength)
 - iii. HClO₄,HClO₂ (increasing oxidizing power)
- 14. i. Name the process of manufacture of H₂SO₄
 - ii. Outline the different steps involved
 - iii. What will you observe when H₂SO₄ is added to hydrated CuSO₄
- 15. i. How does O₃ react with lead sulphide? Write chemical equation.
 - ii. What happens when SO₂ is passed in acidified KMnO4 solution?
 - iii. SO_2 behaves with lime water similar to CO_2 .
- 16. An unknown salt X reacts with hot conc. H₂SO₄ to produce a brown coloured gas which intensifies on addition on copper turnings. On adding dilute ferrous sulphate solution to an aqueous solution of X and then carefully adding conc. H₂SO₄ along the sides of the test tube, a brown complex Y is formed at the interface between the solution and H₂SO₄. Identify X and Y and write the chemical equation involved in the reaction.
- 17. A transluscent while waxy solid (A) on heating in an inert atmosphere is converted to its allotropic form (B), Allotrope (A) on reaction with very dilute aqueous NaOH liberates a highly poisonous gas (C) having a rotten fish smell, with excess of chlorine forms D which hydrolyses to form compound (E). Identify the compounds (A) to (E).
- 18. Identify A, B, C, D and E in the following sequence of reactions.

Complete the reactions of the above mentioned sequence

19. Write the structure of A, B, C, D and E in the following sequence of reactions:

Complete reactions of the above mentioned sequence and name the process by which 'C' is obtained.

$$NH_3 + O_2 \xrightarrow{Pt/Rh} A + H_2O$$

$$A + O_2 \xrightarrow{Pt/Rh} B \text{ (brown fumes)}$$

$$B + H_2O \xrightarrow{Pt/Rh} C + A \text{ (C is an oxoacid)}$$

$$C + I^- \xrightarrow{Pt/Rh} D \text{ (Violet vapours)}$$

- 20. i. Name the compound of phosphorus similar to ammonia.
 - ii. Suggest a method for preparing the above compound in the laboratory.
 - iii. Write the balanced chemical equation.